Baumann Software Calculator

Function-Buttons

\section*{| \Varangle MODE | \Varangle SHIFT |
| :--- | :--- |}

| Mode | $: \quad$ Switching the Angle-Mode RAD DEG GON |
| :--- | :--- | :--- |
| Shift | Switching the Hyperbel-Function for Sine, |
| | Cosine and Tangent. |

Angle-Invert : Switching the Anglefunctions Sine, Cosine and Tangent to it's Reverse-Functions $\left({ }^{-1}\right)$.

RD

Round : Round the displayed Value to two Digits behind Decimalpoint. Scientific-Formats can be shown Normal (if Possible).

Screen Change: Convert Values/Units, the Display-Value will be shown in the Convert-Screen and can be used it to calculating on. 3 Screens are available.

Baumann Software Calculator

Memory Functions

MC $\mathrm{M}+\mathrm{RM}$

MC	$:$	Clear Memory.
M+	:	Adding the Display-Value to the Memory-Value
RM	:	Get the Memory-Value to the Display.

Constants

Button PI:

ITL

Get the Value of $P I$ to the Display, to use PI for Calculations.

Button PI/4:

IJL/ 4
for Ex. Circle-Area Calculation Formula: $d^{2} x$ PI / 4

Example Diameter $=100$
Input: 100, Button $\left[\mathrm{x}^{2}\right]$ Button [PI/4] $=7853,98$

Length of Diagonal in a Square:


```
Example Square-Sidelength = 100
Input: 100, Press Button, = 141,4
```

Fast Divides

```
1/2
```

The Divisor Buttons have all the same Function, they divide the Displayed-Value with the used Button.

Example:

Input 9
Input 356,8765

```
Button [1/2] /2 = 4.5
Button [3/4] /0.75 = 267.66
```


Baumann Software Calculator

Constants and Power

Euler Constant/Golden Number Phi:

With this both Buttons you can use the irrational Numbers of the Euler-Constant [2.71828...] and in [Shift-Mode] the golden Number Phi [1.61803...] to calculating on.

Power to Base (Base and Exponent editable):

n

X

```
Input 2, press Button: Take Value 2 as Base, the Display
    doesn't show a Value, the Calculator
    expecting an Input of another Value
    (Exponent).
Input 3, Take Value 3 as an Exponent
in Sense 23 (2x2x2) = 8
Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - x :],
and get enabled by clicking the Clear-Button.
```

Square Power 2 (Base editable):

```
    2
```

X

Input 2, press Button,	(2×2)	$=4$
Input 3, press Button,	(3×3)	$=9$

Cubic Power 3 (Base editable):

```
Input 2, press Button,
    (2x2x2) = 8
Input 3, press Button,
(3\times3\times3) = 27
```


Baumann Software Calculator

Root-Calculation

Square-Root Calculation:

$\sqrt{ }$

Input 81, press Button

$$
=9 \quad\left(9 \times 9 \text { or } 9^{2}=81\right)
$$

Root Y of Base X Calculation:

Input 81, press Button,	Take 81 as Base-Value, the Display doesn't show a Value now, the Calculator expecting the Input of another Value.
Input 2, (Square-Root) $2^{\text {nd }}$ Root of 81 (Power 2)	Take 2 as Exponent $=9 \quad\left(9^{2}=81\right)$
Input 81, press Button,	Take Value 81 as Base, the Display doesn't show a Value now, the Calculator expecting the Input of another Value.
Input 3, (Cubic-Root) Root of 81 (Power 3)	Take 3 as Exponent $=4.3267\left(4.3267^{3}=81\right)$

Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - - , and get enabled by clicking the Clear-Button.

Invert Value
$1 / \mathrm{x}$

Input 5, press Button (1 divided by 5) $=0,2$

Baumann Software Calculator

Logarithm Base 10

log

```
Input 1000, press Button = 3
```

Natural Logarithm(Euler-Base) [Shift-Mode]

In

```
Input 25, press Button \(=3.2188758\)
```

Angle-Functions

Example Sine of 20° (Mode DEG)

```
Input 20, press Button [sin] = 0.3420201
```

Example Cosine of 20° (Mode DEG)
Input 20, press Button [cos] $=0.9396926$

Example Tangent of 20° (Mode DEG)
Input 20, press Button [tan] $=0.3639702$

Switching the Modes for Angle-Calculations can be set via the Buttons Shift, Mode and INV, see the Explanation for[Shift, Inv and Mode] at the Top of this Document and see also the additional Notes at the End of this Document.

Baumann Software Calculator

Percent

\%

Example 23\% of 3568:

Input 23, press Button [\%] \quad| Take 23 as a Percent-Value, the |
| :--- |
| Display doesn't show a Value now, the |
| Calculator expecting the Input of the |
| Base-Value. |

| Input $3568,\left(\right.$ Base-Value) $\quad \begin{array}{l}\text { Take } 3568 \text { as the Base-Value } \\ 23 \% \text { of } 3568\end{array}$ |
| :--- | | $=820.64$ |
| :--- |

Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - x :], and get enabled by clicking the Clear-Button.

Logarithm of a Number to a Base

lg(b)

Example Logarithm of 8 to Base 2:

Baumann Software Calculator

Calculation

\section*{| Hours | Price | $42.90 \quad$ Money/h |
| :--- | :--- | :--- |}

This Calculator have a simple Possibility to calculate Costs or Prices via a variable Value for Money/Hour. The predefined Value is 42,90 Money/Hour (for Ex. $€ / h$). This Value can be changed by edit a new Value and clicking on the old Value 42.90.

Example 1:

You have a Sum of Money 3500,- and you need to calculate how much Time you can work for this 3500,-

Input 3500, press Button [Hours] $=86.42$ Hours

Example 2:

You have a predefined Time of 80 Hours and you need to calculate the Costs for your Work.

Input 80, press Button [Price] = 3240

The Input Field

This Buttons for the Number-Input are trivial and don't need an Explanation. Additional to the Numbers, there is one Button for set the Prefix and one to set the Decimalpoint.

Button C deleting all Registers and set back the Calculator.
The Result-Button [=] gives the Results of Calculations with the Base-Calculations or Functions. Go on press on [=] calculating on.

Example: 2 [+] 2 [=] 4, [=] 6, [=] 8, [=] 10
This Function [Calculating On] is also available by clicking on the Buttons [+] [-] [x] [:].

Baumann Software Calculator

Example Inputs

Addition and calculating on:

```
2[+]2[=] 4[+][+]= 6 [+] = 8 (+2 stay as Operator [+] Button)
2[+]2[=] 4[=] = 6 [=] = 8 (+2 stay as Operator [=] Button)
```


Subtract and calculating on:

```
8[-]2[=] 6[-][-]= 4 [-] = 2 (-2 stay as Operator [-] Button)
8[-]2[=] 6[=] = 4 [=] = 2 (-2 stay as Operator [=] Button)
```

```
Multiply and calculating on:
4[x]2[=] 8[x][x]=16 [x] =32 (x 2 stay as Operator [x] Button)
4[x]2[=] 8[=] =16 [=] =32 (x 2 stay as Operator [=] Button)
```


Divide and calculating on:

```
8[:]2[=] 4[:][:]= 2 [:] = 1 (:2 stay as Operator [:] Button)
8[:]2[=] 4[=] = 2 [=] = 1 (:2 stay as Operator [=] Button)
```


Input Examples:

The actual Version 2.0 Code 21 do NOT provide the Dot before Dash Rule!

```
Example 1 (Basic Calculations/Changing Operators):
3[+] 2 [x] 2 = 10 (Calculating 5 x 2, +2 replaced by x 2)
Variant:
3 [+] 2 [=] [x] 2 = 10 (Calculating 5 x 2)
```

Example 2 (Basic Calculations/Changing Operators):

```
3 [x] 2 [+] 2 = 8 (Calculating 6 +2, x 2 replaced by +2)
Variant:
3 [x] 2 [=] [+] 2 = 8 (Calculating 6 +2)
```

```
Example 3 (Basic Calculations with Constants)
3[x][PI][+]2 = 11.42 (Calculating 9.42 +2, x PI replaced)
Variant:
3[x][PI][=][+] 2 = 11.42 (Calculating 9.42 +2)
```

Example 4 (Basic Calculations with Pow):
$3[x] 2\left[x^{2}\right][+] 2=14$ (Calculating $\left.3 \mathbf{x}[4]+2\right)$
Variant:
$3[x] 2\left[x^{2}\right][=][+] 2=14$ (Calculating $12+2$)

Baumann Software Calculator

Angle-Functions

Example Tangent

(1)

Given: Adjacent Cathete $=325 \mathrm{~mm}$ Opposite Cathete $=180 \mathrm{~mm}$

Find Angle α :

```
Angle-Function Tangent tan = Opposite Cathete/Adjacent Cathete
    tan = 180 mm / 325 mm
    tan = 0.5538462
```

Press Button Angle Reverse-Function

$$
\text { Angle } \alpha=\underline{28.979^{\circ}}
$$

(2)

Given

$$
\begin{array}{ll}
\text { Angle } \alpha & =25^{\circ} \\
\text { Aligned Cathete } & =550 \mathrm{~mm}
\end{array}
$$

Find the Opposite Cathete:
Formula Change ~ Opposite Cathete $=\tan \alpha 25^{\circ} \mathbf{x}$ Adjacent Cathete Opposite Cathete $=0.4663076 \times 550 \mathrm{~mm}$
Opposite Cathete $=\underline{256.47 \mathrm{~mm}}$
(3)

Givenn: Angle $\alpha=18^{\circ}$
Opposite Cathete $=185 \mathrm{~mm}$
Find the adjacent Kathete:
Formula Change ~ Adjacent Cathete $=$ Opposite Cathete $/ \tan \alpha 5^{\circ}$ Adjacent Cathete $=185 \mathrm{~mm} / 0.3249196$
Adjacent Cathete $=569.37 \mathrm{~mm}$

Baumann Software Calculator

```
Calculating Angles via Screen 
```

Press Button

The Screen2 is made for easier calculating Angles and it's Functions.

Choose the Mode for Sine, Cosine or Tangent and do the Inputs for this Calculations.

In this Example for Sine we give an Angle as an Input and the Length of the opposite Cathete, during the Input, the Calculator calculating the Length of the Hypothenuse.

Button [Arrow-Left] returning to the Main Calculator-Screen.

The Result can be use in the Main Calculator-Screen by check the [Take over Result] CheckBox before click the Button [Arrow-Left].

Button [C] set all Inputs back.

Convert Units

X

Button to change to the Convert-Screen (Values in Display get take over if it is available)

Example: Convert 56 F Fahrenheit to Kelvin and back.

Choose Category Temperature:

```
Source (S) Choose Unit [Fahrenheit]
Target (T) Choose Unit [Kelvin]
Button [Calculate] = 286.48K
Calculate back (Test):
Source (S) Choose Unit [Kelvin]
Target (T) Choose Unit [Fahrenheit]
Button [Calculate] = 56F
```

Results can be take over to the Main Calculator-Screen by check the [Take over Result] CheckBox and click [®ख].

Calculation Helpers

This new Screen provides you with some Functions, that are commonly used in Mathematics.

The Display-Value of the Calculator is dislayed as the Fractional Counter.

If a Counter and a Denominator is given, you can calculate the GCD or the LCM.

The GCD and LCM are mostly used by fractioanl Calculation if you need to reduce or expanding Fractions.
gcd(counter, denominator); lcm (counter, denominator); Fract. Value = conter/denominator;

The fractional Value will also be calculated and displayed, by click on [Calculate]. Additional, you can check the Divisibly and the Primefactors of the Denominator-Value.

In this Example we calculate the lcm of 253 and 670, and we get the Primefactors of 670 by clicking on the [PrimeFactors] Button.

Primefactors of 670: $2 \times 5 \mathrm{x} 67$
lcm (the $1^{\text {st }}$ or smallest Multiple for both Numbers 253 \& 670)
Multiples of $253=253 x 1,253 x 2$. . . $253 \times 670=169510$
Multiples of $670=670 x 1,670 \times 2$. . $670 \times 253=\underline{169510}$

The Button [Divisible] checking the divisibly of 670, and give back the Integer-Numbers that divide 670 without a RestValue (Modulo).

670 is divisible without Rest by the Numbers 1, 2, 5, 10, 67, 134, 335, 670.

This Screen is available since Code20.

Baumann Software Calculator

Programming
Elmar Baumann
Moerser Straße 245
47228 Duisburg
admin@baumannsoftware.com

Developed with Android Studio
Get it free on Google Play
https://play.google.com/store/apps/details?id=com.test.taschenrechner\&hl=de

Baumann Software Calculator

Last Release
Code 21, Version 2.0, Release 30.04.2024

```
Android Studio Jellyfish 2023.3.1
```


Baumann Software Calculator

Short History

Code 6:

The variable Value for Calculation of Price or Hours is stored since Code 6.
to change this Value:

- Type in a new Value (Money/hour)
- Fingerclick on the Value Text Bottom Right near Price
- New Value is set

The Calculator can be closed or terminate now, at the next Start of the Calculator, it get this (new) stored Value.

Code 8:

Button $\left[10^{x}\right]$ are removed and replaced by [$]$], with this new Button, the Euler-Constant can be used for calculations.

Code 13:

The Button [\%oo] (Per 10000) removed and replaced by the Factorial-Funktion Button [n!]. Natural Numbers f.Ex. 4 will be calculated: $1 \times 2 \times 3 \times 4=24$ (4! == 24). Decimal Numbers will be calculated by the Euler Gamma-Function.
For Example: 4.2! == 32.58

Code 15:

Check of all Functions- and Inputs as a Quality-Control done.

Code 16:

Adaption for bigger Screens [Tablets], Shift-Modus extended Natural Logarithm [ln], Euler-Base Logarithm added.

Code 17:
Gamma-Function Decimal-Number Factorial [n!] Code-Revision for a better Accuracy.

Extensions:
Shift-Modus, Button $3 / 4$ erhält den Modus
DigitSum
Shift-Modus, Button $1 / 10$ erhält den Modus
DigitProduct

Code 18

Code-Changes at the Input-Validation of the Basic-
Calculations (+ - x :),

The Convert-Screen is extended, all Items the can be used on both Sides (Source/Target) now. Overall 208 possible Pairings of the Categories Length, Weight, Volume, Speed and Temperature as Calculation-Methods are available.

Convert Hints:

```
Unit Pint = UK Pint (Imperial Pint)
Unit Barrel = US Barrel for Oil
Unit Zentner = DE 50 Kg
```


Code 19

Input-Errors removed, (Methods like f.Ex. [\%] that needs a 2nd Input-Value, crashing the App in Case the the Display have NO Value AND the Prefix-Button [+-] was clicked

Extensions:
Result-Checkings for:

Prime Numbers (Result is only divisible by itself OR 1)

Armstrong Number (Count of the Digits is Exponent - every Digit is added by the Power of the Exponent)

Palindrome Number (A Number that have the same Value if it is mirrored f.Ex. 131, 4224)

Every ONE Digit Number >0 is a Palindrome and also Armstrong Number ($1,2,3,4,5,6,7,8,9$)

Examples: 151 (Prime Number, Palindrome)

```
153 (Armstrong Number) - Count of Digits = 3
(3 = Exponent) }\mp@subsup{1}{}{3}+\mp@subsup{2}{}{3}+\mp@subsup{3}{}{3}=15
```

A Text Output shows the Result everytimes if the ResultButton [=] is clicked.

Example:
Search a Prime-Number near 100

Input:

```
[100]+[1][=] 101 (Prime Number)(Palindrome)
[=] 102
[=] 103 (Prime Number)
[=] 104
[=] 105
[=] 106
[=] 107 (Prime Number)
```


Fixes:

- Input-Validation recoded.
- Factorial-Calculation recoded to Datatypes BigInteger/BigDecimal (Java).

Example 50! = 3.041409320171337804E064

50! Factorial have 65 Digits. Count of Nulls at the End is 12
$50!=30414093201713378043612608166064768844377641568960512000000000000$

- New Inputvalidation permit the 90° Input for the TangentFunction in DEG Mode.
- Big Numbers (Factorials) can be displayed if the Shift-Mode is active:

Example:

Input:
[Shift] 102 [n!] = 9.614466715035126609E161

96144667150351266092686555869725954845535590505965946436944471404853171513025459 06033149618823644513849855959803620591575037100428655329280000000000000000000000 00

Code 20:

Screen4 Calculation Helpers implemented, Calculation of the greatest common Divisor (gcd) and the least common Multiple (lcm) of two Values.

Code 21:

Screen 4: Extension for Functions [Divisible] and [Primefactors].

Screen2: All Convertings checked.

Button [\%o] replaced by a Logarithm-Function to a given Base.

The Calculator-App is translated to the English Language. The Language of the Android-System is (if NOT English is setted) set the Application to German Language.

Shift Modus Extensions:

Minimum and Maximum:

Example Minimum:

Input 23.75, Button [$\downarrow \downarrow]$ Result $=23$

This Function cutting all Digits after Decimalpoint and return the Value before Decimalpoint (Next lower Integer).

Example Maximum:

Input 23.34, Button [$\uparrow \uparrow]$ Result $=24$

This Function cutting all Digits after Decimalpoint and increase the Value before Decimalpoint with 1 (Next higher Integer).

Integer:

int

Example:

Input 23.75, Button [int]	Result $=24$	(Round up)	
Input 23.5,	Button [int]	Result $=24$	(Round up)
Input 23.25, Button [int]	Result $=23$	(Round down)	

This Function rounding a Decimal-Number up- or down into the resulting Integer-Number.

Next lower Integer if the Digit after Decimalpoint is <0.5 Next higher Integer if the Digit after Decimalpoint is $>=0.5$

Logarithm to a given Base:

Example: $\log _{2} 8$
Input 8, press Button [lg(b)],
Input 2, press Button [=], (Base is now 2) Result $=3$

This Function is helpful if you need to calculate an unknown Power of a Number.

For this Example:
$2^{x}=8$
| $\log _{2}$
$\log _{2}\left(2^{x}\right)=\log _{2}(8)$
$\mathrm{x}=\log _{2}(8)$
$\mathrm{x}=\log _{2} / \log _{8} \quad$ (Internal Calculation)
$x=3$

