Display		
		DEG M 0.0
		0
Angle Mode	:	RAD - DEG - GON.
Operator	:	Active Operation [+][-][x][:] Top Left
Memory Value	:	M 0.0 (0.0 = Memory is Zero)
Invert [INV]	:	Displayed Right beside the Angle-Mode and show if the Angle-Reverse Function is On or Off
Shift-Status	:	Shown Top Left as Status of the Mode of the Angle-Functions Sine, Cosine, Tangent or it's SinH, CosH a nd TanH Hyperbel-Functions
Mantisse	:	25 Digits, 23 including Prefix and Decimalpoint

Function-Buttons

∡ MODE	¥ Sl	HIFT
Mode Shift	:	Switching the Angle-Mode RAD DEG GON Switching the Hyperbel-Function for Sine , Cosine and Tangent .
Angle-Invert	:	Switching the Anglefunctions Sine, Cosine and Tangent to it's Reverse-Functions (⁻¹).
RD	:	Round the displayed Value to two Digits behind Decimalpoint. Scientific-Formats can be shown <i>Normal</i> (if Possible).
¹ 🔀		
Screen Change	:	Convert Values/Units, the Display-Value will be shown in the Convert-Screen and can be used it to calculating on. 3 Screens are available.

J	Memory Functions						
	MC	M+	RM				
1	MC		:				

:	Clear Memory.
:	Adding the Display-Value to the Memory-Value
:	Get the Memory-Value to the Display.

Constants

Button PI:

M+ RM

Get the Value of PI to the Display, to use PI for Calculations.

Button PI/4:

for Ex. Circle-Area Calculation Formula: d² x PI / 4

```
Example Diameter = 100
Input: 100, Button [x<sup>2</sup>] Button [PI/4] = 7853,98
```

Length of Diagonal in a Square:


```
Example Square-Sidelength = 100
Input: 100, Press Button, = 141,4
Note: Square-Diagonal = \sqrt{2} x Sidelength,
```

Fast Divides 1/2 1/3 1/4 1/8 1/10 3/4

The Divisor Buttons have all the same Function, they divide the Displayed-Value with the used Button.

Examp.	Le:					
Input	9	Button	[½]	/2	=	4.5
Input	356,8765	Button	[¾]	/0.75	=	267.66

Constants and Power

Euler Constant/Golden Number Phi:

With this both Buttons you can use the irrational Numbers of the Euler-Constant [2.71828...] and in [Shift-Mode] the golden Number Phi [1.61803...] to calculating on.

Power to Base (Base and Exponent editable):

x	
Input 2, press Button:	Take Value 2 as Base, the Display doesn't show a Value, the Calculator expecting an Input of another Value (Exponent).
Input 3,	Take Value 3 as an Exponent
in Sense 2³ (2x2x2)	= 8

Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - x :], and get enabled by clicking the Clear-Button.

Square Power 2 (Base editable):

Input	2,	press	Button,	(2x2)	=	4
Input	3,	press	Button,	(<i>3x3</i>)	=	9

Cubic Power 3 (Base editable):

Input	2,	press	Button,	(2x2x2)	=	8
Input	3,	press	Button,	(3x3x3)	=	27

Root-Calculation

Square-Root Calculation:

Input 81, press Button = 9 (9x9 or $9^2 = 81$)

Input 81, press Button,	Take 81 as Base-Value, the Display doesn't show a Value now, the Calculator expecting the Input of another Value.
Input 2, (Square-Root)	Take 2 as Exponent
2 nd Root of 81 (Power 2)	= 9 $(9^2 = 81)$

Input 81, press Button, Take Value **81** as Base, the Display doesn't show a Value now, the Calculator expecting the Input of another Value.

Input 3, (Cubic-Root) Root of 81 (Power 3)

Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - x :], and get enabled by clicking the Clear-Button.

Take **3** as Exponent

 $= 4.3267 \quad (4.3267^3 = 81)$

Input 5, press Button (1 divided by 5) = 0, 2

Logarithm Base 10

log

In

Input 1000, press Button = 3

Natural Logarithm (Euler-Base) [Shift-Mode]

Input 25, press Button = 3.2188758

Angle-Functions

Example Sine of 20° (Mode DEG) Input 20, press Button [sin] = 0.3420201

Example Cosine of 20° (Mode DEG)

Input 20, press Button [cos] = 0.9396926

Example Tangent of 20° (Mode DEG)

Input 20, press Button [tan] = 0.3639702

Switching the Modes for Angle-Calculations can be set via the Buttons **Shift, Mode** and **INV**, see the Explanation for[Shift,Inv and Mode] at the Top of this Document and see also the additional Notes at the End of this Document.

Percent

23% of 3568

Example 23% of 3568:

Input 23, press Button [%] Take 23 as a Percent-Value, the Display doesn't show a Value now, the Calculator expecting the Input of the Base-Value.
Input 3568, (Base-Value) Take 3568 as the Base-Value

Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - x :], and get enabled by clicking the Clear-Button.

= 820.64

Logarithm of a Number to a Base

Example Logarithm of 8 to Base 2:

Input 8, press Button Take 8 as Input, the Display doesn't show a Value now, the Calculator expecting the Input of another Value, Input of Base.

Input 2, (Ba	ase)	T	lake	2	as	the	Base.
Logarithm Ba	ase2 of 8	8 =	= 3				

Calculations that needs 2 Values will be disabled while calculating in Base-Operations [+ - x :], and get enabled by clicking the Clear-Button.

Calculation

Hours Price 42.90 Money/h

This Calculator have a simple Possibility to calculate Costs or Prices via a variable Value for Money/Hour. The predefined Value is 42,90 Money/Hour (for Ex. \in /h). This Value can be changed by edit a new Value and clicking on the old Value 42.90.

Example 1:

You have a Sum of Money 3500,- and you need to calculate how much Time you can work for this 3500,-

Input 3500, press Button [Hours] = 86.42 Hours

Example 2:

You have a predefined Time of 80 Hours and you need to calculate the Costs for your Work.

Input 80, press Button [Price] = 3240

The Input Field

This Buttons for the Number-Input are trivial and don't need an Explanation. Additional to the Numbers, there is one Button for set the Prefix and one to set the Decimalpoint.

Button C deleting all Registers and set back the Calculator.

The Result-Button [=] gives the Results of Calculations with the Base-Calculations or Functions. Go on press on [=] calculating on.

Example: 2 [+] 2 [=] 4, [=] 6, [=] 8, [=] 10

This Function [Calculating On] is also available by clicking on the Buttons [+] [-] [x] [:].

Example Inputs

Addition and calculating on:

2[+]2[=] 4[+][+]= 6[+] = 8 (+2 stay as Operator [+] Button) 2[+]2[=] 4[=] = 6[=] = 8 (+2 stay as Operator [=] Button)

Subtract and calculating on:

8[-]2[=] 6[-][-]=4 [-] = 2 (-2 stay as Operator [-] Button) 8[-]2[=] 6[=] = 4 [=] = 2 (-2 stay as Operator [=] Button)

Multiply and calculating on:

4[x]2[=] 8[x][x]=16[x] =32 (x 2 stay as Operator [x] Button) 4[x]2[=] 8[=] =16[=] =32 (x 2 stay as Operator [=] Button)

Divide and calculating on:

8[:]2[=] 4[:][:]=2[:]=1 (:2 stay as Operator [:] Button) 8[:]2[=] 4[=] = 2[=] = 1 (:2 stay as Operator [=] Button)

Input Examples:

The actual Version 2.0 Code 21 do NOT provide the Dot before Dash Rule!

Example 1 (Basic Calculations/Changing Operators): 3 [+] 2 [x] 2 = 10 (Calculating 5 x 2, +2 replaced by x 2) Variant: 3 [+] 2 [=] [x] 2 = 10 (Calculating 5 x 2)

Example 2 (Basic Calculations/Changing Operators): 3 [x] 2 [+] 2 = 8 (Calculating 6 +2, x 2 replaced by +2) Variant: 3 [x] 2 [=] [+] 2 = 8 (Calculating 6 +2)

Example 3 (Basic Calculations with Constants): 3[x][PI][+]2 = 11.42 (Calculating 9.42 +2, x PI replaced) Variant: 3[x][PI][=][+] 2 = 11.42 (Calculating 9.42 +2)

Example 4 (Basic Calculations with Pow): $3[x]2[x^2][+]2 = 14$ (Calculating $3 \times [4] + 2$) Variant: $3[x]2[x^2][=][+]2 = 14$ (Calculating 12 + 2) Angle-Functions

Adjacent Cathete

Example Tangent

(1) Given:	Adjacent C Opposite C	Cathete Cathete	= 325 m = 180 m	m m		
Find Angl	eα:					
Angle-Fun	ction Tange	ent tan tan tan	= Opposi = 180 mm = 0.5538	te Cathete/ / 325 mm 462	'Adjacent C	Cathete
Press But	ton Angle F	Reverse-Fi	unction			
			4-1			
		Angl	.e α = <u>28</u>	<u>.979°</u>		
(2) Given:	Angle α Aligned Ca	thete	= 25° = 550 m	m		
Find the Formula C	Opposite Ca hange ~	athete: Opposite Opposite Opposite	Cathete Cathete Cathete	= tan α 25° = 0.4663076 = <u>256.47 mm</u>	'x Adjacer 5 x 550 mm <u>n</u>	t Cathete
(3) Givenn:	Angle α Opposite C	Cathete	= 18° = 185 m	m		
Find the Formula C	adjacent Ka hange ~	athete: Adjacent Adjacent Adjacent	C athete Cathete Cathete	= Opposite = 185 mm / = <u>569.37 mm</u>	Cathete / 0.3249196	tan α25°

Calculating Angles via Screen 2

Press Button

C Ar	ngle Mode	DEG
● Sine ○	Cosine	⊖ Tangent
Angle Alpha	0.0	
Adjacent Cathete	0.0	
Opposite Cathete	0.0	
Hypothenuse	0.0	
🔲 Take over Resu	lt	
111	0	<

The Screen2 is made for easier calculating Angles and it's Functions.

Choose the Mode for Sine, Cosine or Tangent and do the Inputs for this Calculations.

In this Example for **Sine** we give an Angle as an Input and the Length of the opposite Cathete, during the Input, the Calculator calculating the Length of the Hypothenuse.

Button [Arrow-Left] returning to the Main Calculator-Screen.

The Result can be use in the Main Calculator-Screen by check the [Take over Result] CheckBox before click the Button [Arrow-Left].

Button [C] set all Inputs back.

Convert Units

Button to change to the Convert-Screen (Values in Display get take over if it is available)

Example: Convert 56F Fahrenheit to Kelvin and back.

Choose Category Temperature:

Source (S) Choose Unit [Fahrenheit] Target (T) Choose Unit [Kelvin] Button [Calculate] = 286.48K

Calculate back (Test): Source (S) Choose Unit [Kelvin] Target (T) Choose Unit [Fahrenheit] Button [Calculate] = 56F

Results can be take over to the Main Calculator-Screen by check the [Take over Result] CheckBox and click [\boxdot].

ConvertScreen			
286.48333333333335			
Temperature			
(S) Fahrenheit (T) Kelvin			
Calculate C ± 🛛			
Take over Result			

ConvertScreen			
56.00000000000007			
286.48333333333335 Kelvin = 56.00000000000007 Fahrenheit			
Temperature			
(S) Kelvin	(T) Fah	renheit	
Calculate C	± 🛛		
Take over Result			
111	0	<	

Calculation Helpers

This new Screen provides you with some Functions, that are commonly used in Mathematics.

The Display-Value of the Calculator is dislayed as the Fractional Counter.

If a Counter and a Denominator is given, you can calculate the GCD or the LCM.

The GCD and LCM are mostly used by fractioanl Calculation if you need to reduce or expanding Fractions.

gcd(counter,denominator); lcm(counter,denominator); Fract. Value = conter/denominator;

The fractional Value will also be calculated and displayed, by click on [Calculate]. Additional, you can check the Divisibly and the

Primefactors of the Denominator-Value.

In this Example we calculate the **lcm** of **253** and **670**, and we get the Primefactors of 670 by clicking on the [PrimeFactors] Button.

Primefactors of 670: 2 x 5 x 67

1cm (the 1st or smallest Multiple for both Numbers 253 & 670) Multiples of 253 = 253x1, 253x2 . . . 253x670 = <u>169510</u> Multiples of 670 = 670x1, 670x2 . . . 670x253 = <u>169510</u>

The Button [Divisible] checking the divisibly of 670, and give back the Integer-Numbers that divide 670 without a Rest-Value (Modulo).

670 is divisible without Rest by the Numbers 1, 2, 5, 10, 67, 134, 335, 670.

This Screen is available since Code20.

Programming

Elmar Baumann Moerser Straße 245 47228 Duisburg

admin@baumannsoftware.com

Developed with Android Studio

Get it free on Google Play https://play.google.com/store/apps/details?id=com.test.taschenrechner&hl=de

Baumann Software Calculator

Last Release

Code 21, Version 2.0, Release 30.04.2024

Android Studio Koala 2024.1.1

Short History

Code 6:

The variable Value for Calculation of **Price** or **Hours** is stored since **Code 6**.

to change this Value:

- Type in a new Value (Money/hour)
- Fingerclick on the Value Text Bottom Right near Price
- New Value is set

The Calculator can be closed or terminate now, at the next Start of the Calculator, it get this (new) stored Value.

Code 8:

Button $[10^x]$ are removed and replaced by $[\mathbf{E}]$, with this new Button, the Euler-Constant can be used for calculations.

Code 13:

The Button [∞] (Per 10000) removed and replaced by the Factorial-Funktion Button [n!]. Natural Numbers f.Ex. 4 will be calculated: 1x2x3x4 = 24 (4! == 24). Decimal Numbers will be calculated by the Euler Gamma-Function. For Example: 4.2! == 32.58

Code 15:

Check of all Functions- and Inputs as a Quality-Control done.

Code 16:

Adaption for bigger Screens [Tablets], Shift-Modus extended - Natural Logarithm [ln], Euler-Base Logarithm added.

Code 17:

Gamma-Function Decimal-Number Factorial **[n!]** Code-Revision for a better Accuracy.

Extensions: Shift-Modus, Button ¾ erhält den Modus **DigitSum** [DS] Shift-Modus, Button ¼ erhält den Modus **DigitProduct** [DP]

DS = Digit Sum for Ex. 1234 (1+2+3+4) = 10 DP = Digit Product 1234 (1x2x3x4) = 24, 120 (1x2x0) = 0 Code 18

Code-Changes at the Input-Validation of the Basic-Calculations (+ - x :),

The Convert-Screen is extended, all Items the can be used on both Sides (Source/Target) now. Overall **208** possible Pairings of the Categories Length, Weight, Volume, Speed and Temperature as Calculation-Methods are available.

Convert Hints:

Unit Pint = **UK** Pint (Imperial Pint) Unit Barrel = **US** Barrel for Oil Unit Zentner = **DE** 50 Kg

Code 19

Input-Errors removed, (Methods like f.Ex. [%] that needs a 2nd Input-Value, crashing the App in Case the the Display have NO Value AND the Prefix-Button [+-] was clicked

Extensions: Result-Checkings for:

Prime Numbers (Result is only divisible by itself OR 1)

Armstrong Number (Count of the Digits is Exponent - every Digit is added by the Power of the Exponent)

Palindrome Number (A Number that have the same Value if it is mirrored f.Ex. 131, 4224)

Every ONE Digit Number > 0 is a Palindrome and also Armstrong Number (1,2,3,4,5,6,7,8,9)

Examples: 151 (Prime Number, Palindrome)

153 (Armstrong Number) - Count of Digits = 3 (3 = Exponent) $1^3 + 2^3 + 3^3 = 153$

A Text Output shows the Result everytimes if the Result-Button [=] is clicked. Example:

Search a Prime-Number near 100

```
Input:

[100]+[1][=] 101 (Prime Number)(Palindrome)

[=] 102

[=] 103 (Prime Number)

[=] 104

[=] 105

[=] 106

[=] 107 (Prime Number)
```

Fixes:

- Input-Validation recoded.
- Factorial-Calculation recoded to Datatypes BigInteger/BigDecimal (Java).

Example 50! = 3.041409320171337804E064

50! Factorial have 65 Digits. Count of Nulls at the End is 12

50!=3041409320171337804361260816606476884437764156896051200000000000000

- New Inputvalidation permit the 90° Input for the Tangent-Function in DEG Mode.
- Big Numbers (Factorials) can be displayed if the Shift-Mode is active:

Example:

Input:
[Shift] 102 [n!] = 9.614466715035126609E161

```
96144667150351266092686555869725954845535590505965946436944471404853171513025459
0603314961882364451384985595980362059157503710042865532928000000000000000000000
00
```

Code 20:

Screen4 Calculation Helpers implemented, Calculation of the greatest common Divisor (**gcd**) and the least common Multiple (**lcm**) of two Values.

Code 21:

Screen4: Extension for Functions [Divisible] and [Primefactors].

Screen2: All Convertings checked.

Button [‰] replaced by a Logarithm-Function to a given Base.

The Calculator-App is translated to the English Language. The Language of the Android-System is (if *NOT* English is setted) set the Application to German Language.

Shift Modus Extensions:

Minimum and Maximum:

Example Minimum:

Input 23.75, Button $[\downarrow]$ Result = 23

This Function cutting all Digits after Decimalpoint and return the Value before Decimalpoint (Next lower Integer).

Example Maximum:

Input 23.34, Button [$\uparrow\uparrow$] Result = 24

This Function cutting all Digits after Decimalpoint and increase the Value before Decimalpoint with 1 (Next higher Integer).

Integer:

Example:

```
Input 23.75, Button [int]Result = 24(Round up)Input 23.5, Button [int]Result = 24(Round up)Input 23.25, Button [int]Result = 23(Round down)
```

This Function rounding a Decimal-Number up- or down into the resulting Integer-Number.

Next lower Integer if the Digit after Decimalpoint is < 0.5Next higher Integer if the Digit after Decimalpoint is >= 0.5

Logarithm to a given Base:

Example: log₂8

```
Input 8, press Button [lg(b)],
Input 2, press Button [=], (Base is now 2) Result = 3
```

This Function is helpful if you need to calculate an unknown Power of a Number.

For this Example:

```
2^{x} = 8 | log<sub>2</sub>

log_{2} (2^{x}) = log_{2} (8)

x = log_{2} (8)

x = log_{2} / log_{8} (Internal Calculation)

x = 3
```

Code 22

English Language implemented if the Android System set to an English Language.

Code 23

Fontsize-Adaption, if the Android System is set to bigger/smaller Fontsizes.

Code 24

Error removed in gcD (greatest common Divisor) Calculation on Screen 3, the Recursive-Function did crashing the App in some Cases.

Code 25

Screen 3 Divisibility expanded to the Euler Totient Function.

 $\phi(n)$ = Amount of the coprime Numbers in Area 1 to n, a Divisor to another Number applies coprime, if it divides the Number with a Rest-Value.

Examples: